The Extrageniculate Visual Pathway Generates Distinct Response Properties in the Higher Visual Areas of Mice

نویسندگان

  • Manavu Tohmi
  • Reiko Meguro
  • Hiroaki Tsukano
  • Ryuichi Hishida
  • Katsuei Shibuki
چکیده

BACKGROUND Visual information conveyed through the extrageniculate visual pathway, which runs from the retina via the superior colliculus (SC) and the lateral posterior nucleus (LPN) of the thalamus to the higher visual cortex, plays a critical role in the visual capabilities of many mammalian species. However, its functional role in the higher visual cortex remains unclear. Here, we observed visual cortical area activity in anesthetized mice to evaluate the role of the extrageniculate pathway on their specialized visual properties. RESULTS The preferred stimulus velocities of neurons in the higher visual areas (lateromedial [LM], anterolateral [AL], anteromedial [AM], and rostrolateral [RL] areas) were measured using flavoprotein fluorescence imaging and two-photon calcium imaging and were higher than those in the primary visual cortex (V1). Further, the velocity-tuning properties of the higher visual areas were different from each other. The response activities in these areas decreased after V1 ablation; however, the visual properties' differences were preserved. After SC destruction, these preferences for high velocities disappeared, and their tuning profiles became similar to that of the V1, whereas the tuning profile of the V1 remained relatively normal. Neural tracer experiments revealed that each of these higher visual areas connected with specific subregions of the LPN. CONCLUSIONS The preservation of visual property differences among the higher visual areas following V1 lesions and their loss following SC lesions indicate that pathways from the SC through the thalamus to higher cortical areas are sufficient to support these differences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An fMRI study of human visual cortex in response to spatiotemporal properties of visual stimuli

  ABSTRACT  Background: The brain response to temporal frequencies (TF) has been already reported, but with no study reported for different TF with respect to various spatial frequencies (SF).  Materials and Methods: fMRI was performed by 1.5T GE-system in 14 volunteers during checkerboard, with TFs of 4, 6, 8 and 10Hz in low and high SFs of 0.5 and 8cpd.  Results: Average percentage BOLD signa...

متن کامل

Receptive Field Encoding Model for Dynamic Natural Vision

Introduction: Encoding models are used to predict human brain activity in response to sensory stimuli. The purpose of these models is to explain how sensory information represent in the brain. Convolutional neural networks trained by images are capable of encoding magnetic resonance imaging data of humans viewing natural images. Considering the hemodynamic response function, these networks are ...

متن کامل

Effects of visual deprivation on epileptic activity in mature rat visual cortex

  Effects of visual deprivation on the induction of epileptiform activity were studied in layer II/III of mature rat primary visual cortex. Field potentials were evoked by stimulation of layer IV in slices from control and dark-reared (OR) rats. Picrotoxin (PTX)-induced epileptic activity was characterized by spontaneous and evoked epileptic field potentials (EFPs). The results showed that OR s...

متن کامل

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2014